<u>การทดสอบ Limit Switch ที่ควบคุมด้วยอุณหภูมิ ด้วย FLUKE 750 Series</u>

Limit Switch เป็นอุปกรณ์สำคัญตัวหนึ่งที่นิยมใช้กันมากในระบบกระบวนการผลิตในอุตสาหกรรม ทั้งเป็นตัว ที่ใช้ดัดต่อหรือเปลี่ยนแปลงค่าพารามิเตอร์ที่ต้องการ FLUKE 750 Series จะสามารถสอบเทียบได้ทั้งอุณหภูมิ (Temperature) ที่ทำหน้าที่เป็น Switch ซึ่งเรียกว่า Thermostat และความดัน (Pressure) เราจะเรียกว่า Pressure Switch.

เซ็ทพอยต์ (Set Point)

ตัวอย่างของ Limit Switch ในงานด้านอุณหภูมิที่นิยมใช้กันมากในกระบวนการผลิตในอุตสาหกรรมก็คือ เทอร์โมสตัด (Thermostat) ยกตัวอย่างเช่น เราต้องการควบคุมอุณหภูมิของฮีทเตอร์ (Heater) หรือ คอมเพรสเซอร์ (Compressor) ให้ได้ตามอุณหภูมิที่เรากำหนด ซึ่งเราจะเรียกอุณหภูมินั้นว่า เซ็ทพอยต์ (set point) เป็นอุณหภูมิที่ บอกว่าจะต้องควบคุมอุณหภูมิให้ได้ใกล้เคียงจุดดังกล่าวนี้ตลอดเวลา หาก set point ไม่ตรงตามที่เราตั้งไว้ ค่าอุณหภูมิ เกิดผิดพลาดไป หน้าคอนแท็ค (contact relay) มีปัญหา อาจเกิดผลเสียกับกระบวนการผลิต รวมถึงผลิตภัณฑ์ได้ ดังนั้นเราจึงควรตรวจสอบค่าอุณหภูมิที่เซ็ทพอยต์ (set point) รวมทั้งการทำงานของรีเลย์ ดังกล่าวอยู่เป็นประจำ หลักการทำงานก็คือขณะอุณหภูมิที่เซนเซอร์ (sensor) มีค่าต่ำหรือสูงกว่าจุด set point ให้ Close/Open contact switch เพื่อให้ Heater หรือ Compressor ทำงาน ซึ่งจะทำงานสักระยะจนกระทั่งอุณหภูมิสูงหลือต่ำกว่าจุดอุณหภูมิ Set point Heater หรือ Compressor ก็จะหยุดทำงานและจะเริ่มทำงานอีกครั้งเมื่ออุณหภูมิสูงหรือต่ำกว่าจุดอุณหภูมิ Set point ซึ่งการทำงานของเทอร์โมสตัด (Thermostat) ก็จะวนอย่างนี้ไปเรื่อย ๆ ช่วงอุณหภูมิจากที่ Heater หรือ Compressor เริ่มทำงานจนกระทั่งหยุดทำงาน จะต้องเป็นช่วงอุณหภูมิที่เรายอมรับได้ และจะต้องไม่เป็นช่วงที่กว้าง หรือแคบเกินไป หากช่วงอุณหภูมิดังกล่าวกว้างเกินไป อุณหภูมิที่เราควบคุมก็จะไม่แม่นยำ ไม่เป็นไปตามค่า set point ที่เราตั้งไว้ ซึ่งจะทำให้เกิดผลเสียต่อผลิตภัณฑ์หรือชิ้นงานในกระบวนการผลิตได้ และเช่นเดียวกันหากช่วงอุณหภูมิ ดังกล่าวแคบเกินไป ก็จะทำให้ Heater ทำงานและหยุดทำงานถิ่มาก ผลก็คือ Heater จะทำงานหนักอายุการใช้งานของ Heater หรือ Compressor ก็จะลดลงและประสิทธิภาพในการทำอุณหภูมิต่ำด้วยเช่นกัน ด้วยเหตุนี้เราจึงจำเป็นที่ จะต้องตรวจสอบช่วงอุณหภูมิดังกล่าวนี้ และวิเคราะห์ค่าว่าเหมาะสมกับกระบวนการผลิตหรือไม่

EXAMPLE ทดสอบเทอร์โมสตัด (Thermostat) ที่มี sensor เป็นแบบเทอร์โมคับเปิ้ล type K โดยใช้ FLUKE 740 Series ซึ่งจะกำหนดอุณหภูมิ set point ที่ 20°C โดยกำหนดค่าช่วงอุณหภูมิ Dead Band ไม่ให้ด่ำกว่า (minimum) 1°C และไม่ให้สูงเกิน (maximum) 3°C ค่าความผิดพลาด (Tolerance) ไม่เกิน 1°C

MEASURE									
Open									
			Ω						
SOURCE			ТС Туре К						
25.0 °C									
Int. Ref.	24.4°C	ITS-90	0.026mV-						
As Found	Step	Save	More Choices						

รูปที่ 2

 เลือกฟงัชั่นจ่าย (source) ให้เป็นเทอร์โมคับเบิ้ล type K และเลือกฟงัชั่นวัด (Measure) ให้เป็น Switch Test (ตามรูปที่ 2)

รูปที่ 3

- ต่อวงจรตามรูปที่ 3 โดยดู Switch ให้แน่ใจว่าเป็น Switch แบบปกติ ปิด/เปิด (NO/NC) อย่างไร ซึ่งตัวอย่างนี้เราจะใช้ Switch แบบปกติ เปิด (ON)
- 3) กดปุ่ม AS found (จะเห็นตามรูปที่ 4) ซึ่งผู้ใช้งานสามารถกำหนดค่าที่ยอมรับได้ลงไปได้ทันที โดยที่ set point 1 Low 20°C คือจุดที่อุณหภูมิที่ถูกตั้งไว้เพื่อตัดต่อ เมื่ออุณหภูมิต่ำกว่า 20°C Tolerance คือ ความไม่แน่นอนหรือค่าผิดพลาดสูงสุดที่เรายอมรับได้ Dead Band Min/Max เป็นค่าช่วงอุณหภูมิที่แกว่ง อยู่ในช่วงเซ็ทพอยต์ ซึ่งเราต้องกำหนดค่าให้เมหาะสมกับกระบวนการผลิต แล้วกดปุ่ม Done

<u>Х</u> SOURCE TC Туре К		MEASURE			<u>×</u>	
Setpoint	1 Low	20.0 °C		Re	set	
	Tolerance	1.0 °C				
Dead	lband Min	1.0 °C	SOURCE			ТС Туре К
Deadb	and Max	3_°C	25.0°C		•	
Trip Function Trip Cont		25.0 C			,	
			Int. Ref.	25.3°C	ITS-90	-0.013mV-
Abort		Done	Abort	Auto Test	Manual Test	
รูปที่ 4			ູລຳ	ไที่ 5		

 เมื่อกดปุ่ม Done แล้ว จะเห็นหน้าจอตามรูปที่ 5 จากนั้นกดปุ่ม Auto Test FLUKE 750 Series จะทำ การหาจุดทำงานของ Switch อัตโนมัติ ซึ่งผลที่ได้ออกมาจะได้ตามรูปที่ 6

Setpoint 1 Low TC Type K		- Si	etpoint 1 Low – TC	С Туре К 👘	
Set	18.8 °C		Set		19.9°C
Setpoint Error	-1.2 °C		Setpoint Error		-0.1 °C
Reset	20.6 °C		Reset		21.8°C
Deadband	1.8 °C		Deadband		1.9°C
Deadband Error	0.0 °C		Deadband Error		0.0°C
	Done				Done

5) เราจะเห็นได้ว่าที่เราทำการ set point นั้นที่ 20°C จริง ๆ แล้ว set point ถูก set ไว้ที่ 18.8°C set point Error ก็คือ -1.2°C Dead Band = 1.8°C ซึ่งจะเห็นได้ว่า set point Error เกินค่าที่ถูกกำหนดไว้ข้างต้น จึงต้องมีการปรับค่า (Adjust) จุด set point อีกครั้ง

รูปที่ 6

- 6) หลังจากที่เราทำ Adjust แล้ว เราจึงทำการ AS Left ซึ่งมีขั้นตอนที่เหมือนกับ AS found ซึ่งผลที่ได้จะ เป็นไปตามรูปที่ 7 ซึ่งจะเห็นได้ว่า set point Error = 0.1°C ลดลงจากก่อนที่จะทำการ Adjust ซึ่งเรา ยอมรับได้
- ผลที่ได้ทั้งหมดจากการทดสอบ Switch จะถูกเก็บไว้ในเครื่องตาม Tag ID ที่กำหนด และสามารถทำเป็น Report รายงานผลต่อไป